Thread 2/3, 9-8-2000: “turning” and “turning friction”

Bendito

 Tensors are what turn many people off from learning Einstein's general

theory of relativity. Or at least it's why they think it's hard. Tensors can

be thought of as the next step up from vectors, but they're a lot more than

that. In fact, vectors are 1st rank tensors, themselves, while matrices are

2nd rank tensors. In general, a tensor has a "rank" and an "order". The rank

tells you how many indices it has, and the order tells you how many

dimensions of space each index of the tensor resides in. Finally, like

vectors and matrices, tensors obey certain transformation rules.

 But like most things in life, you won't get a gut feeling for tensors

until you spend some quality time solving tensor problems. :)

Matt Jessick

> I'm generating lateral and longitudinal forces for the front

> (steering) wheels according to the angle between the vehicle velocity

> and the wheel heading.

You should eventually calculate the components of velocity at

each tire contact patch due to the sum of the center of mass

velocity and also the component due to rotation of the tire

about the center of mass when you calculate the

angle between the tires orientation and its velocity.

If you leave off the component from the rotation you will

lose an important "damping" term in the rotational

equations of motion. This is an interesting term for racing

because this damping effect varies with velocity such that

it is half as much at twice the speed. (So a car driven fast

has less damping than a car driven slower.)

This is something that makes me cringe each time an

empty pickup truck careens past me

making a wild lane change on a Texas freeway. ;)

If you have "Race Car Vehicle Dynamics", IIRC Chapter 5 covers

basic yaw stability and this effect is termed there

"Path Curvature Stiffness".

> Yes, I already had a look into that. Shouldn't be too difficult in the

> beginning, because the direction of the wheel velocity is

> perpendicular to the car's CM, which is constant, and I have a

> variable containing the angular velocity (around the yaw axis), so

> |v|=ang.vel.*r (where r is distance from CM to wheel center).

>

This is correct as a "scalar" (that is, non-vector) equation

and is useful if you already know the direction of the

velocity component. It's straight forward to calculate both the

size of the component and its direction using vector equations.

velocity_vector = angular_velocity_vector Cross_Product radius_vector

The wheel_velocity_from_vehicle_rotation will add damping

which will help oscillations die away. Stability (where the total

of all the torques is pointed in the correct diection so they tend to

resist motion rather than make it worse) is also important

(Maybe more so. Damping isn't generally all that helpful if it's unstable ;)

You can get extra stability by doing setup type things that make the car more

understeer. More weight on the rears (a bit aft CG) and/or

slightly better tires on the rear, that sort of thing.

The angular velocity vector for a right turn is

downward, into the ground. Stick your right thumb out,

point it down, notice that your fingers curve around to the right

(clockwise if you looked down on them along the axis of your thumb.)

If that didn't work, forget I mentioned it ;);)

Actually, that seems to be a common way people are taught

to remember how to rotate a body in the standard "positive"

sense around an axis described by a vector. Seriously ;)

 BTW, if you write right handed, always put down your pencil

 before performing this excercise. Otherwise, you will be tempted

 to use your left hand. You'll end up backwards, with a "left handed"

 coordinate system ;) (Sorry, I don't know any better coordinate system

jokes!)

Since a right turn is a positive rotation around a body coordinate

axis pointing downward into the Earth, and the right turn adds

to ones compass heading, it is intuitive to use a positive

yaw rate for right turns. This is why it is a very common

standard in vehicle dynamics to put the yaw axis pointing

down into the Earth. (subtle plug for standard vehicle

dynamics coordinate systems ;)

One trick is include the coordinate frame in the vector name,

then it is more obvious if you are using it incorrectly.

I have World frame, Body, Wheel, Tire, Driver body, Driver head,

Camera, Viewpoint, Track, NED (North-East-Down), etc., etc...

so it is easy to become confused otherwise.

Todd Wasson

 I'd forget about complex tire models for now and simply use an equation like

this to generate lateral forces:

 Grip_Coef = Slip_Angle[Tire] * .25

 If Grip_Coef > 1 then Grip_Coef = 1

 If Grip_Coef < -1 then Grip_Coef = -1

 This will let the Grip or Friction Coefficient (however you like to think of

it) increase to 1 at 4 degrees of slip angle (like a high cornering stiffness

F-1 or Indycar tire, perhaps). If you want something more like a street tire,

try multiplying by .1 or so. You'll get the same total grip, but at a higher

yaw angle. You can change the "Grip_Coef > 1" to whatever you like, of course.

 Then you're multiplying this Grip_Coef by the load on the tire, which can be

damper and spring forces and unsprung weight all added together at each corner,

or just 1/4th the weight of the car for now, until you get past this stage.

 > - After all forces are calculated, apply a 'friction cap', which

>tops off the friction force to its maximum value for the surface

>(rubber-road for example). For example, another force leading to

>friction might be a (strong) wind. In fact, drag could/should be

>implemented this way, I think.

 Perhaps this is really more simple than you are thinking. There are

basically two forces at each tire you should be concerned with right now.

Longitudinal (throttling/braking/drivetrain friction), and lateral (developed

by slip angle).

 Force_Lat = Slip_Angle * .1 (for now)

 Force_Long = Wheel Torque/Tire Radius

 Force_Long can be changed to use slip ratio instead of a straight calculation

like this. It's more realistic and it lets you spin the tires as well as lock

them up. You can even tell your sim to make skid marks once a certain slip

ratio has been exceeded.

 You might try implementing aerodynamic drag by applying the correct force to

the CM of the car. It has nothing to do with the friction at the tires.

Later, the force could be applied to a center of drag that would torque the

body as well as slowing it down, causing the nose to lift at high speed. (I

haven't used a center of drag yet myself, although I can put wings on the car

and do fun things that way :-))

 I don't understand what other friction forces you are referring to here aside

from lateral and longitudinal force. I apply drivetrain or brake friction by

using negative torque at the wheels. This causes a reduction in slip ratio and

a change in longitudinal force.

 As you are apparently already doing, calculate the maximum force the tire can

generate. I check the longitudinal force first. If it's greater than the

maximum tire force available, I limit it (longForce=maximum possible force).

If it is not greater, I leave longForce alone.

 Then, I use the Pythagorean theorem (I have no clue about vector calculus) to

limit the lateral force if necessary. Whatever the case may be, the vector sum

of forceLong and forceLat can't exceed the total force available (in my model,

anyway). You can do this by just dealing with longitudinal, lateral, and a

resultant force acting at the tires. Ignoring the resultant force's direction

altogether, the pythagorean theorem makes limiting the forces, if necessary,

easy.

Basically, the "slip ratio" is the ratio between the --theoretical-- rotational

velocity (if it was free rolling with no input torque) and the --actual--

rotational velocity.

 If you want to use "slip ratio" with rotating tires and go from a 6 degree of

freedom model to a 10 DOF, try using something like:

 longGrip_Coef = Slip_Ratio * 12

 longForce = longGrip_Coef * normalForce

 Then cap the longGrip_Coef to a maximum. The only problem I've had with this

personally is low speed instability (the tire shakes forwards and backwards

when the car is moving slowly because you're dividing by a number close to 0,

generating huge slip ratios and torques that jolt the tire forwards and

backwards). To fix this, at some low speed where the problem becomes apparent,

try subtracting the rotational velocities from each other and multiplying by a

small number.

 If you go the "slip ratio" route, you'll need to increase your sampling rate

dramatically or the tires will be hoplessely unstable. I use 166Mhz to 300+Mhz

in my model.

Matt Jessick

If you move the wheels just up and down relative to the cars main

frame, then you have a 5 rigid body simulation with

6 DOF for the main body and 1 more for each wheel body.

If you maintain a "state" for each wheels rotation then

you are up to 14, if you add various rotating drive train

elements you are up to... ;)

A rule of thumb for digital simulation is you want to integrate

100 times faster than the frequencies of interest in the dynamics

you are modeling. This is for people designing systems that

could kill people if they screw up. On PC's, one rarely has

enough processor for a real time system that also has to

display graphics to do this. If you use more sophisticated

integration techniques or accept some risk of instability,

you can drop that factor of 100 down quite a bit, but you

have to be very careful and methodical.

That would imply that for a road car with a soft suspension at 1.6

Hertz you want to integrate at 160 Hz. For a more sporty car

at say 3 Hz suspension, 300 Hz. Etc.

However, if you start using slip ratio and keep a state

for the rotation of the tires, the longitudinal forces

produce dynamics rather faster than these frequencies.

Depending on how you set up the car (springs, center of gravity,

etc.) you can get into situations where the pitch frequency

is significantly higher than the heave frequency.

