INERTIA TENSORS

  Ok, can anybody help me out on this one?  My project is not using inertia

tensors because I don't understand how to use them.  Right now, I have three

different polar moment of inertia values that are local to the car (yaw, pitch,

and roll axes).  These alter rotational velocity and acceleration directly

around the three world axes.  This seems to work well enough as long as the car

isn't flipping through the air or driving on a 80 degree embankment/hill.  When

it does fly into the air, it doesn't flip correctly of course.  Their isn't any

gyroscopic precession to the tumble.  This must be effecting the rest of the

model at high bank angles too.

  I downloaded and printed out a ton of information on rigid body dynamics and

inertia tensors for angular momentum calculations, and understand some of the

concepts.  For instance, angular velocity is usually not manipulated directly

or used at all in rigid body dynamic simulation, as by applying forces to the

body through the inertia tensor, angular momentum gets changed directly and

appropriately instead, something that is supposedly very difficult and

expensive to do correctly to angular velocities.  

  So, suppose I express my initial inertia tensor using the three seperate

polar moments of inertia of the sprung weight of the car (assuming it's the

same as a 3-D box) in matrix form like this:

 Inertia1    0       0

    0     Inertia2   0

    0         0    Inertia3

  I downloaded a paper written by David Baraff, from the Robotics Institute at

Carnegie Mellon University, available at Chris Hecker's web page:

http://www.d6.com/users/checker/dynamics.htm

  This explained to me everything I currently know on this subject up until now

(which isn't much, obviously!).  In it, he shows how a force vector and a

position vector for the location of the force on the body can be used to find

the total torque vector on the body (for 3 dimensions).  However, I'm confused

as to what to do with this torque and the inertia tensor.  I'm using a 3x3

matrix to define the rotational orientation of the sprung mass of the car. 

What do I do with the torque vector?  It says that the inertia tensor itself

changes with orientation.  Should I be multiplying my orientation matrix by the

inertia tensor, then multiplying the result by the angular momentum matrix and

the time step in order to change the orientation matrix again?  Any ideas??  I

know GPL must do this for the body, as well as all four wheels independently,

because there's gyroscopic precession in the wheels, and this is the only way I

can imagine it might be done.  

  Help!!  

Thanks,

Todd Wasson

Gregor Veble

Hello,

First of all, for those not interested, I appologize for the longish

post.

You are just one small step away from doing it correctly.

There is much talk of the 6DOF models. These 6 degrees of freedom are

the position of the center of gravity (3 components) and then three

variables that describe the rotational orientation of the object

relative to its c.o.g. . As you say, and it's the easiest way to do it,

instead of using, say, three angles (say, pitch, yaw, roll) to describe

orientation, you are using a 3x3 matrix that is very well known to

anyone ever doing 3D graphics, however, usually in 3D graphics the

position vector is also included in the last row (or column) to form a

larger 4x4 matrix.

The 3x3 orientation matrix, let's name it O, is an orthogonal matrix,

meaning that if you exchange rows and columns and multiply it by the

original matrix )transpose it, O^T ), you should get the identity

matrix.

Now, the inertia tensor (let's name it J0 in the local coordinates of

the body) can also be represented as a 3x3 matrix. However, this tensor

is a constant only in the system that rotates with the vehicle. The

tensor that you created with components in pitch, yaw, and roll axes is

an example of such a tensor, although generally you would also get

components away from the diagonal.

If you've done 3D graphics, you know that the position of an arbitrary

vector v0 that is given in the local coordinates of the body needs to be

multiplied by the orientation matrix O, v = O v0 , to get the vector v

as the vector v0 oriented in the world coordinates. The tensor J0 in

world coordinates, J, however transforms a bit differently (as a

matrix). Without going into too much detail, to obtain the world

representation of the tensor J, you need to perform the following

operation:

J = O J0 O^T, (1)

where O^T is the transposed of O as given before.

I guess you are familiar with the concept of rotational momentum, gamma,

which is a vector. The relation

d(gamma)/dt = torque, (2)

is true, where torque is the torque vector. Now, gamma is given as 

gamma = J omega, (3)

where omega is the rotational velocity vector, which points along the

axis of the rotation and whose magnitue gives the speed of rotation.

Actually, 

(d O)/dt y0 = omega (x) (O y0) (4)

holds true, where (d O)/dt is the time derivative of the orientation

matrix, (x) denotes the vectorial product, and v is an arbitrary vector.

Similarly,

(d O^T)/dt y = - O^T (omega (x) y) . (5)

Now one needs to take into account that both the tensor of inertia in

the world (but not local) coordinates and omega change with time. 

Inserting (3) into (2), and taking into account both (4), (5) and (1),

one gets

omega (x) O J0 O^T omega - O J0 O^T (omega (x) omega) 

+ O J0 O^T (d omega)/dt = torque (6)

where the second term clearly vanishes, and from this one obtains

(d omega)/dt = J^(-1) (torque - omega (x) (J omega) ). (7)

While the derivation was done in an inertial frame of reference (world

coordinates for example), the equation (7) can be rewriten in any frame

of reference, as long as all the quantities are transformed correctly.

In the local coordinate system of the body, the J is just J0 (and J^(-1)

is the inverse of the J0 (J0^(-1)), while in the world system

J=O J0 O^T,  J^(-1)= O (J0^(-1)) O^T.

If you need help on how to update the matrix O from a given vector

omega, let me know, but basically you need to construct a matrix that

creates a small rotation around the vector omega and multiply the matrix

O by it from the left.

-Gregor 

P.S. There might be some small errors above as I've last visited this

derivation a while ago. The result (7) that you need, however, is surely

correct.

Petri

Hi Todd,

I've been working on a little driving simulation of my own since last July,

and have managed to build fully working rigid body dynamics for it, so I

might be able to help.

>   This explained to me everything I currently know on this subject up

until

now

> (which isn't much, obviously!).  In it, he shows how a force vector and a

> position vector for the location of the force on the body can be used to

find

> the total torque vector on the body (for 3 dimensions).  However, I'm

confused

> as to what to do with this torque and the inertia tensor.  I'm using a 3x3

> matrix to define the rotational orientation of the sprung mass of the car.

> What do I do with the torque vector?  It says that the inertia tensor

itself

> changes with orientation.  Should I be multiplying my orientation matrix

by

the

> inertia tensor, then multiplying the result by the angular momentum matrix

and

> the time step in order to change the orientation matrix again?  Any

ideas??

First of all, you need to work with the _inverse_ of the inertia tensor.

It's no big deal, simply calculate the inverse once in the beginning and

store it. If you're just using the elements on the diagonal (ie. you assume

no asymmetry in the mass distribution) the inverse of the matrix can be

calculated by just inverting the elements.

Assuming you calculate the torque vector and angular velocity and momentum

vectors in world coordinates, as I have done, what you do is you take the

torque vector (tau) and multiply by the time step (dt), then add this to the

angular momentum vector (L) of the object:

    L = L + tau * dt

To calculate the angular velocity vector, you first multiply the current

rotation matrix (R) by the inverse of the inertia tensor (Ibodyinv, which

you calculate and store once in the beginning of the program), then multiply

the result of that by the transpose of the current rotation matrix (this

operation transforms the inverse of the inertia tensor from body coordinates

to world coordinates):

    Iinv = R * Ibodyinv * transpose(R)

Then, to get the new angular velocity vector (omega), you multiply the

angular momentum vector by Iinv. Et voila, there you have it:

    omega = L * Iinv

Then you just integrate, calculate the new rotation matrix, and you'll have

your cars rotating realistically, with precession and all that.

I'm using quaternions for rotation which makes things slightly different,

but the basic principle is the same. For numerical integration, I suggest

using a fourth-order Runge-Kutta method for accuracy.

I hope this helps (and that I didn't make any mistakes... I'm sure someone

will step in and correct me if I did. :)

Petri Blomqvist

I must say I would heartily recommend this approach over what I

suggested. Working with both the angular momentum and angular velocity

is easier to implement than just the angular velocity approach (which is

what my derivation focused on). Blame it on my narrowminded education

:).

-Gregor

>    omega = L * Iinv

>

>Then you just integrate, calculate the new rotation matrix, and you'll have

>your cars rotating realistically, with precession and all that.

  Ok, let me see if I follow you here.  I was going to have a symmetrical

inertia tensor:

inertia1    0         0

  0       inertia2    0

  0           0     inertia3

  But what I really want is the inverse of this.  Is this it?  Silly question,

I know.

Ibodyinv:

inertia3    0         0

  0       inertia2    0

  0           0     inertia1

  I'm a real amateur with matrices and vectors at this point, as I've just

started using these one or two months ago.  My 3-D graphics are a wireframe

Win32Api thing that hardly uses vectors or matrices at all, so I'm still

learning this stuff.

  The angular momentum vector is a 3x3 matrix, correct?  Or is it a three

dimensional vector?

  The angular velocity vector is also a 3x3 matrix, correct?

  Ok, to calculate the angular velocity vector, I multiply the current rotation

matrix by the inverse of the inertia tensor, which is calculated one time at

the beginning of the simulation.  The, I multiply the result of that by the

transpose of the current rotation matrix.  What is the transpose of the

rotation matrix?  

Rotation matrix is:

xx  yx  zx

xy  yy  zy

xz  yz  zz

   Ok, after the result of this is found, I get the new angular velocity vector

by multiplying the angular momentum vector by Ibodyinv (the inverse of the

inertia tensor).  

  Now, the angular velocity vector is essentially added to the old rotation

matrix to get the new rotation matrix?

  Geeze, I guess I have a lot of homework to do here!  I'll go through this

paper again with your post as a guide.  Hopefully I'll get this working. 

Studying vectors and matrices more ought to help.  

  Thank you very much for your help Petri.

Todd Wasson

> Ibodyinv:

> inertia3    0         0

>   0       inertia2    0

>   0           0     inertia1

Not quite. :) This is what I meant:

1/inertia1   0               0

0               1/inertia2   0

0               0               1/inertia3

In general, inverting a matrix is more complex, but if every element off the

diagonal is zero you can take this handy shortcut.

>   I'm a real amateur with matrices and vectors at this point, as I've just

> started using these one or two months ago.  My 3-D graphics are a

wireframe

> Win32Api thing that hardly uses vectors or matrices at all, so I'm still

> learning this stuff.

I'm using OpenGL for my own simulation. I must say, if I had to pick one

thing about OpenGL that I like the most, it's the ease with which it can be

learnt and used. I've gone in a couple of months from spinning, unlit

single-colored cubes to multitextured, lit, environment-mapped 3d models. I

don't think I could've done that with D3D. Other people's mileage may vary,

of course. :)

>   The angular momentum vector is a 3x3 matrix, correct?  Or is it a three

> dimensional vector?

It's a 3-d vector.

>   The angular velocity vector is also a 3x3 matrix, correct?

Nope, it's also a 3-d vector. :)

>   Ok, to calculate the angular velocity vector, I multiply the current

rotation

> matrix by the inverse of the inertia tensor, which is calculated one time

at

> the beginning of the simulation.  The, I multiply the result of that by

the

> transpose of the current rotation matrix.  What is the transpose of the

> rotation matrix?

> Rotation matrix is:

> xx  yx  zx

> xy  yy  zy

> xz  yz  zz

Transposing a matrix means simply mirroring it along the diagonal, in this

case the transpose is

xx  xy  xz

yx  yy  yz

zx  zy  zz

>    Ok, after the result of this is found, I get the new angular velocity

vector

> by multiplying the angular momentum vector by Ibodyinv (the inverse of the

> inertia tensor).

Not by Ibodyinv, but by the result of what we discussed above (which is

Ibodyinv transformed to world coordinates).

>   Now, the angular velocity vector is essentially added to the old

rotation

> matrix to get the new rotation matrix?

No, you first form a matrix from the elements of the angular velocity vector

like this:

 0   -z    y

 z    0   -x

-y    x    0

Then you multiply this by the old rotation matrix, and add the result of

this to the old rotation matrix to get the new one.

If you're wondering where that matrix in the middle comes from, I believe

the formulation is in the Baraff paper you downloaded.

Then there's also the fact that you'll need to normalize the rotation matrix

every now and then to keep it orthogonal. Normalizing quaternions is faster,

which is one good reason to use them.

>   Geeze, I guess I have a lot of homework to do here!  I'll go through

this

> paper again with your post as a guide.  Hopefully I'll get this working.

> Studying vectors and matrices more ought to help.

Yep, that's the key. And once you have the rigid body dynamics working,

adding things like aerodynamic effects is a breeze, if you'll pardon the

pun. :)

>   Thank you very much for your help Petri.

Happy to help.

By the way, you mentioned something about precession of the wheels in GPL? I

haven't seen that game (shame on me :), I assume you mean the wheels precess

if they go flying through the air after a crash? Sounds cool.

Petri Blomqvist

  Great, thanks again Petri.  I'll see what I can do now.  Yes, basic

aerodynamics will be pretty simple to add in when things are done this way. 

Also, I imagine adding impulses from collisions would be simplified quite a

bit.  (I haven't gone there yet anyway.)

>By the way, you mentioned something about precession of the wheels in GPL? I

>haven't seen that game (shame on me :), I assume you mean the wheels precess

>if they go flying through the air after a crash? Sounds cool.

>

  Yes, basically.  If you get some air off a steep hill, you're supposedly able

to rotate the car by steering the front wheels once airborne.  GPL seems to be

the most complete model out there, but I haven't tried N4, Nascar Heat, or

Viper Racing, so maybe it's just the hype.  I don't imagine many folks would go

through the trouble of modelling each wheel with an inertia tensor, but GPL

seems to have done this.  I know I don't, it's complicated enough as it is

right now!  Might as well do the flywheel and engine this way too.  That way,

high engine rpm's would cause the chassis to have a little more resistance to

turning.  Probably not enough to notice, of course.  Don't count on me doing

this!  lol  Real frame rate killer for an unnoticable effect.

  Thanks for the help again, Petri.  I'll see what I can do with this and come

back later if I get stuck.

Todd Wasson

  It works!  Thanks for everybody's help here.  It seems to work properly. 

Download a little demo here at 

http://performancesimulations.com/files/vector3b.exe

  Input an initial torque in world space about the x,y, and z axes.  This

torque only lasts for one frame, then the object spins on it's own after that. 

It looks like it is working correctly to me.  What do you guys/gals think?  It

may not work on either Windows 2000 or ME, I forget which one, but it's fine on

Win95/98.  Thanks for any input, and thanks again for the help.

Todd Wasson

Hi Todd

Quick and dirty inverter of a 3x3 matric for you, plenty of room for

improvement, but as you only need to call once (or whenever you mass

distribution changes) then it will do :O)

Chris

BOOL InverseMassMatrix(MATRIX3X3 *source, MATRIX3X3 *dest)

{

    long col,row;

    float fDet;

    float fInvdet;

    dest->matrix[0][0] = source->matrix[1][1] * source->matrix[2][2] -

source->matrix[1][2] * source->matrix[2][1];

    dest->matrix[0][1] = source->matrix[0][2] * source->matrix[2][1] -

source->matrix[0][1] * source->matrix[2][2];

    dest->matrix[0][2] = source->matrix[0][1] * source->matrix[1][2] -

source->matrix[0][2] * source->matrix[1][1];

    dest->matrix[1][0] = source->matrix[1][2] * source->matrix[2][0] -

source->matrix[1][0] * source->matrix[2][2];

    dest->matrix[1][1] = source->matrix[0][0] * source->matrix[2][2] -

source->matrix[0][2] * source->matrix[2][0];

    dest->matrix[1][2] = source->matrix[0][2] * source->matrix[1][0] -

source->matrix[0][0] * source->matrix[1][2];

    dest->matrix[2][0] = source->matrix[1][0] * source->matrix[2][1] -

source->matrix[1][1] * source->matrix[2][0];

    dest->matrix[2][1] = source->matrix[0][1] * source->matrix[2][0] -

source->matrix[0][0] * source->matrix[2][1];

    dest->matrix[2][2] = source->matrix[0][0] * source->matrix[1][1] -

source->matrix[0][1] * source->matrix[1][0];

    fDet = source->matrix[0][0] * dest->matrix[0][0] + source->matrix[0][1]

* dest->matrix[1][0] + source->matrix[0][2] * dest->matrix[2][0];

    if ( fabs(fDet) <= 1e-06 )

     return FALSE;

    fInvdet = 1.0f / fDet;

    for ( row = 0; row < 3; row++)

    {

        for ( col = 0; col < 3; col++)

            dest->matrix[row][col] *= fInvdet;

    }

    return TRUE;

}

Thats Row Major :O)

Ruud van Gaal wrote in message <3a5aaf98.937478653@news.xs4all.nl>...

>On Sun, 7 Jan 2001 02:21:51 -0000, "Chris West"

><chris.west1@ntlworld.com> wrote:

>

>>Quick and dirty inverter of a 3x3 matric for you,

>...

>>BOOL InverseMassMatrix(MATRIX3X3 *source, MATRIX3X3 *dest)

>>{

>

>Is that a column-major or row-major matrix? It will really be

>

> Do objects really do wierd things like that when they're spinning in 0g?

> Bizarre!

>  Not sure if it's right.

You still seem to have some work ahead of you. That rotation looks a lot

like what I got from my first attempts. In fact, I only got mine working

when I switched to using quaternions to describe the orientations of my

objects... but I digress. :)

I would suggest that you use a top (large moment of inertia on one axis,

a much smaller one on the other two) to test the rotation. If you can

make the top spin and precess stably by giving it a large initial angular

momentum on the axis with the large moment of inertia, and small

momentums on the other two, your code is probably working.

Petri Blomqvist

