Engine to wheel torque inertia, 5-2-2001

Ruud:

Hi there,

I'm adding some variables to my car model, while reading 'Fundamentals

of Vehicle Dynamics' from Thomas Gillespie. Well, actually, I'm

converting the body and wheels to rigid body classes which use

quaternions and inertia tensors for their rotation (so I have faster

functions and gyroscopic precession for free for all the

forces/torques I want to add) (this 'simplified' model will allow

easier inclusion of new forces/torques in a more clean way).

Anyway, in the book, Gillespie follows the engine torque to the

wheels, and does it like this:

Te=point on the engine's torque curve

Tc=Te-IeAe

  where Tc=torque at the clutch, Ie=rotational inertia of the engine,

and Ae=engine rotational acceleration.

Td=Tc-...

Ta=Td-...

(Td=torque output to the driveshaft, Ta=torque on the axles)

So he keeps subtracting torque in every step, based on the

acceleration. Now in simulation, the acceleration is *the question*,

rather than the answer to fill in the equations. It seems I can't use

these formula's like that.

It seems to me that since everything is fixed together, the torque

remains the same, but all inertia of all connected components must be

taken into account, so:

totalInertia=I_engine+I_driveshaft+I_transmission+I_rearaxle(RWD)+...

torque=Te

And then calculate rotational acceleration by torque/totalInertia

(taking into account the transmission's torque multiplier ofcourse).

Right?

The differential will probably be the most problematic part, where I

have to model how it will allow both axle outputs to rotate (which

means the totalInertia might change if the diff locks up more or

less).

This problem looks a lot like what I had once before, namely the

rotation of the wheels; what influence the drivetrain inertia has

together with the wheels on the total change of the engine's rpm. That

was mainly solved by just applying the torque and using the slip ratio

model.

But it seems strange to me what Gillespie writes, namely that torque

*decreases* as it moves from engine to the wheels. At least his

formula's imply so.

Any thoughts? Thanks,

Bob Norton:

When tracking the torque through a gearset the gearing changes the

torques, of course.  What's nearly constant is the power.  There is a

loss in power (due to friction), but otherwise the power stays

constant through gearsets, but not torque.

When thinking of the engine driving the wheels, the fricitional losses

always cause a drop is power when going from the source (engine) to

the point of interest (wheels).  When under engine braking the

fricitional losses will continue to be dissipative.  In this case the

power under engine braking will be higher at the wheels, smaller at

the engine.

Todd Wasson:

  Ruud,

  I'll probably be needing your help with quaternions :0)  Good luck on the

conversion.  

  It's strange how Gillespie's equations show a decrease in torque.  I don't

have his book, so can't comment on that.

  As far running the rotation stuff through the driveline goes, I use something

similar to what you posted:

>totalInertia=I_engine+I_driveshaft+I_transmission+I_rearaxle(RWD)+...

>torque=Te

>

>And then calculate rotational acceleration by torque/totalInertia

>(taking into account the transmission's torque multiplier ofcourse).

>Right?

  That's how I do it.  Not sure if it's right though :0)

>The differential will probably be the most problematic part, where I

>have to model how it will allow both axle outputs to rotate (which

>means the totalInertia might change if the diff locks up more or

>less).

>

  Right now, I loosely simulate the differential action by assigning the drive

torques from the engine independently to each rear wheel, and letting them

accelerate on their own.  This way, they're free to run at their own speeds. 

It seems to work pretty well, as the inside tire spins first in a turn.  By

matching the speeds to either the high or low speed tire, it works just like a

spool/locked rear end, exhibiting push and snap oversteer at high throttle. 

Now, I need to know how the torques are supposed to really be applied, rather

than just splitting it 50/50 all the time. 

  Strange about Gillespie's stuff.  Again, I haven't seen it so can't comment.

Matt Jessick

>But it seems strange to me what Gillespie writes, namely that torque

>*decreases* as it moves from engine to the wheels. At least his

>formula's imply so.

>Any thoughts? Thanks,

Re-read Gillespie Chapter 2 and then sleep with it under your pillow ;)

The torque doesn't decrease, rathersome of it is expended to accelerate

the rotational inertia of the rotating parts. You have to expend

power to accelerate them up, and  it also

takes more braking to slow them back down.

As the book explains, when accelerating the car, you are also

accelerating the rotating parts of the engine and the

drive train.

If you are accelerating a drag racing car at 3 G's with the

clutch not slipping and the final drive locked, you can

expend a noticible part of the engines torque production

just spinning up all this rotational inertia. This effect is most

noticible in the lowest gear, because when the clutch is

locked, the engine is accelerating very fast because

of the large gear ratios commonly in use.

As Gillespie notes, you can express the overall effect of

this as an "effective mass". This is through combining all the

rotational terms together, and noticing that they act just like

the mass in    Forward_force = mass times acceleration

This becomes

    acceleration = force / (mass + effective_mass_rotating_parts)

Where the effective mass can be several hundred pounds

if you aren't careful.  Drag racers are careful, and do things like

using short aluminum or carbon drive shafts instead of long

steel ones, etc., to reduce this penalty. High tech road racers use

exotic wheel materials for similar reasons when allowed and

they can afford it.

The effective_mass of the rotational parts has terms like:

(inertia_wheels +

  inertia_driveshaft * final_drive_ratio**2

  inertia_engine      * overall_gear_ratio**2) / tire_radius**2

given final drive ratios  of 4-5 and overall first gear ratios of 12 or

more

you can see where those gear ratio squared terms can

get out of hand if not controlled.

To answer your question about how to get the accelerations,

"just" ;)  solve the resulting equations for

the unknown accelerations.

It's messy but straightforward for each configuration of the driveline.

(Clutch slipping or not slipping, transmission in gear or out of gear,

differential locked or open = 8 or more cases! ;)

I use the Mathematica program to do this kind of algebra,

otherwise I'd be spending all my time correcting errors ;)

For your case with all nodes locked:

Te = point on the engine's torque curve

Tc = Te - Ie Ae

Tp = Gi Tc - Ip Ap      p = pinion or driveshaft

Aw = (Gfd Tp - FxR)  / Iw         w = drive wheels,

                      FxR is the "Load" torque of the tires forward force

and noting:

Ae = Gi Gfd Aw,

Ap = Gfd Aw

Here is Mathematica script  to solve this:

Ae = Gi Gfd Aw

Ap = Gfd Aw

Tc = Te - Ie Ae

Tp = Gi Tc - Ip Ap

(* then solve the combined equation below for Aw:

  Aw = (Gfd Tp - FxR)  / Iw

*)

Solve[{Aw == (Gfd Tp - FxR)  / Iw}, {Aw}]

The solution is:

Aw = (-FxR + Gfd * Gi * Te) / (Gfd**2 * Gi**2 * Ie + Gfd**2 * Ip + Iw)

and the other accelerations easily derived from that.

(Gillespie gives essentially this solution in Chapter 2.)

Our games also include the transmission input shaft which adds some more

complexity but it is still straight forward but tedious without

Mathematica ;)       Get Mathematica, particularly if you are a student.

They have student packages because it is more addictive than cigarettes!

;)

- Matt

P.S.   Ruud, please note Very Important Caution interspersed below

Ruud van Gaal wrote:

> Hi there,

>

> I'm adding some variables to my car model, while reading 'Fundamentals

> of Vehicle Dynamics' from Thomas Gillespie. Well, actually, I'm

> converting the body and wheels to rigid body classes which use

> quaternions and inertia tensors for their rotation (so I have faster

> functions and gyroscopic precession for free for all the

> forces/torques I want to add) (this 'simplified' model will allow

> easier inclusion of new forces/torques in a more clean way).

>

> Anyway, in the book, Gillespie follows the engine torque to the

> wheels, and does it like this:

>

> Te=point on the engine's torque curve

> Tc=Te-IeAe

>   where Tc=torque at the clutch, Ie=rotational inertia of the engine,

> and Ae=engine rotational acceleration.

>

> Td=Tc-...

> Ta=Td-...

>

> (Td=torque output to the driveshaft, Ta=torque on the axles)

>

> So he keeps subtracting torque in every step, based on the

> acceleration. Now in simulation, the acceleration is *the question*,

> rather than the answer to fill in the equations. It seems I can't use

> these formula's like that.

> It seems to me that since everything is fixed together, the torque

> remains the same, but all inertia of all connected components must be

> taken into account, so:

>

> totalInertia=I_engine+I_driveshaft+I_transmission+I_rearaxle(RWD)+...

Be very careful and do what Gillespie shows. Because of the different

gear ratios, the equation above is useless and misleading.

Use the form that includes consideration of the effect of the

differing rotational accelerations of each part.

The equation above can under estimate the effect of the

engine's inertia by a factor of 50 to 150 or more, depending on gear ratio

> torque=Te

>

> And then calculate rotational acceleration by torque/totalInertia

> (taking into account the transmission's torque multiplier ofcourse).

> Right?

>>  Right now, I loosely simulate the differential action by assigning the

>drive

>>torques from the engine independently to each rear wheel, and letting them

>>accelerate on their own.  This way, they're free to run at their own speeds.

>

>>It seems to work pretty well, as the inside tire spins first in a turn.  By

>>matching the speeds to either the high or low speed tire, it works just like

>a

>>spool/locked rear end, exhibiting push and snap oversteer at high throttle. 

>

>You mean you take the speed of one of both tires, and apply its

>rotational velocity to that of the *entire* axle? (making a solid

>axle)?

  Exactly.  This keeps both rear tires locked to the same speed, and seems to

work just like a spool type differential.  I'll have to study limited slip

diffs a lot more in order to get behavior for those done right.  It seems the

graphs for torque split vs. wheel rpm difference are the key, as there is a

region defined for "locked" behavior in many cases.

  As far as Richard Cheney's stuff goes, it's very nice.  He emailed me that a

couple of weeks ago (I didn't know he had it on a website like that.)  Too bad

I'm not using an OOP language for this.  Still, the entire physics engine runs

at 300Hz main sampling, with 3,000-30,000Hz sampling around the rotational axis

for the tires, in about 1 millisecond on a P400. 

  I'll need to try converting vector3b.exe to use quarternions like you

mentioned.  If that works, converting the car sim to using them should only be

mildly difficult (yeah, right!)  

  BTW, what's the name of Gillespie's book ?

Todd Wasson

>totalInertia=I_engine+I_driveshaft+I_transmission+I_rearaxle(RWD)+...

>

>Be very careful and do what Gillespie shows. Because of the different

>gear ratios, the equation above is useless and misleading.

>Use the form that includes consideration of the effect of the

>differing rotational accelerations of each part.

>The equation above can under estimate the effect of the

>engine's inertia by a factor of 50 to 150 or more, depending on gear ratio

>

>

>

  Yikes!  I better get Gillespie's book too, as I must be doing this

incorrectly.  There's been a long, long series of debates in the past (in other

forums) on mechanical efficiency through a drivetrain.  Engineer types usually

insist it's around 95% or better, while drag racing folks insist it's usually

from 75-90% or so.  This changes with engine torque of course, so in my drag

racing predictor, I allow people to input a "torque lost to friction" value. 

The results have been excellent in terms of prediction accuracy, but perhaps

I'm merely understating the rotational inertia effect as you pointed out.  Any

thoughts, Matt?  This program will be needing a complete re-write after my 3-D

physics engine is done.

Todd Wasson

> racing predictor, I allow people to input a "torque lost to friction" value.

The particular equations tossed around previously in this thread

don't yet include efficiency terms. That's even more torque lost. ;)

(Although Gillespie Chapter 2 has some derivations 

including them also.) 

These equations just properly account for the different rotational 

accelerations being experienced by the different rotating parts. 

If the overall gear ratio is 12, the engine is accelerating

at 12 times the radians/sec/sec of the wheels. 

So just adding the physical rotational inertias doesn't

account for the different accelerations the parts are experiencing.

Inertia * acceleration is larger for the faster elements

so you have to properly account for that when you combine

them to form an effective inertia (which you are going to 

multiply by only one acceleration value).

If you want to use one "effective inertia" for the entire

locked together drive train, the terms combine so that

the gear ratio terms are actually squared. I can't think 

of a good simple motivation for why it turns out that 

way, other than the "cascade" of the equations:

Tc = Te - Ie Ae

Tp = Gi Tc - Ip Ap        p = pinion shaft or drive shaft

... etc.

From just this part of it, with Ae = Gi Gfd Aw

and Ap = Gfd Aw

Tp = Gi (Te - Ie Gi Gfd Aw) - Ip Gfd Aw

so you can start to see how collecting the 

inertia effects of several rotating parts geared in series

results in the proper "weighting" of the inertias 

in calculating one effective inertia term for the 

whole assemblage involves the square of the gear ratios 

such as    Gi Gi Ie  above.

The reason it doesn't much matter for drag racing

is that it would be _too much_ if the 

inertias weren't purposely made as light as possible. 

A lot of the first gear time is also spent with 

the clutch slipping so the engine acceleration 

isn't involved. (The engine starts out at a high speed

and roughly stays there so it doesn't have to be 

accelerated, at least until the clutch engages.)

I happen to be struggling against this effect at the moment 

in some work I'm doing because I need to use higher

inertias than I should otherwise in order to avoid

numerical instabilities in the drive train. 

Until we fix that next week, I've lost a couple

tenths of a second off my ET because of it.

-- 

Matthew V. Jessick         Motorsims

Bob Norton

>from 75-90% or so.  This changes with engine torque of course, so in my drag

>racing predictor, I allow people to input a "torque lost to friction" value. 

While I haven't measured power losses through drag racing gearboxes

(or differentials), I can understand why "engineer types" don't agree

with efficiencies of 75-90%.  Just look at the heat generation values

implied with low efficiencies like this.  While this might not be a

significant factor in the short time frame of drag racing, think about

for a longer race where steady state values are reached.  Using an

*average* horsepower of 500 bhp = 373 kW, an efficiency of 75% tells

you that the heat rejection is 25% of 373 kW, or 93 kW.  There is no

way that amount of heat is being rejected in a racing gearbox!

>you that the heat rejection is 25% of 373 kW, or 93 kW.  There is no

>way that amount of heat is being rejected in a racing gearbox!

  Right!  This is what I don't understand.  In writing SAS (in my link below),

I read lots of debates on this subject and still don't have a clear answer on

what's really going on there.  Patrick Hale, creator of Quarter and Quarter Jr,

the pioneer in this field, appears to be the only one using efficiency values

in the 95+% range in his software.  Since it's listed as "transmission

efficiency", perhaps he's got another efficiency for the rest of the drivetrain

already built into his software.

   For some reason, when I use values that are unrealistic to engineers

(75%-90%), I come up with almost exactly the same outputs as Mr. Hale's

programs do.  I'm hoping that Ruud Van Gaal's book observations and Matt

Jessick's explanations will shed some light on this subject for once :0)  I

suspect that I, along with several other developers of drag racing predictors,

may be miscalculating the torque required to accelerate the drivetrain.  Who

knows?  I'll have to get Gillespie's book and do some studying.  

  On the other hand though, the high performance car and drag race magazines

and racers seem to agree that the driveline efficiency is indeed this poor,

regardless of what anybody says about the incredible heat that "should" be

generated.  The main thing right now that makes me suspect the lower values are

true is that my top speed predictions remain far more accurate with the low

efficiency numbers racers and dyno testers swear by, even though they should be

generating enough heat to do quite a bit of damage, from what others say.  

Todd Wasson

> Yes, strange that mass and inertia can be interchanged like that. Like

> E=mC^2. So this acceleration would be the linear acceleration of the

> center of mass, right?

Yes. This is just a convenient collection of terms that

"acts like" more mass.

> Or should I in the case of a missing wheel (broken off), remove 1

> wheel of the 'inertia_wheels' variable? Sounds ok. But perhaps remove

> a power from tire_radius as well?

> ((inertia_wheels+...)/tire_radius**(number_of_connected_wheels))

> 

> Thanks for the help, I've printed it and will reread it until I fully

> understand it. :)

Yes, If the wheel isn't there, then spinning it up isn't going to 

require torque ;)

Matt

>A large part of the losses in the whole system can probably be

>attributed to the slip ratio not being zero. The loss percentage is

>roughly the same as the value of the slip ratio.

>

  Well, what I'm really referring to here is the ratio of torque output at the

flywheel to the rear wheels (or is it the other way around?? :0) )  SAS doesn't

use slip ratios because I didn't understand them when I wrote it.  It still

makes good predictions, but the final rpm will be off a few percent because the

slip ratio is locked to 0 (coulomb friction model.)   It calculates the

traction limit and doesn't allow the force to exceed it, kind of like traction

control.  It'll still tell you what speed range to expect wheelspin, but it

controls it.  

  When running my 3-D project, I get performance that matches up really closely

to SAS predictions, even with the slip ratio included, so it appears to not

really be a factor.  The losses I'm talking about are frictional through the

drivetrain.  In drag racing circles, folks are always talking about "rear wheel

vs. flywheel horsepower," and looking for quick answers to the percentage

difference.  Anyway, I could go on and on about this, but to make a long story

short, on one side I find engineering folks arguing that 70-90% efficiency

would cause far too much heat and is therefore impossible.  But on the other

side are the dyno test guys that seem to prove them wrong time and again. 

Well, I've covered this in another post, so I won't go further :0)  

  It's still a bit of a mystery that I'd love to be able to prove one way or

the other, and finally dispel the myth that one side or the other believes once

and for all :0)  Geeze, I need a life.....  :-P

Todd Wasson

>Perhaps it's not so bad. If you multiply the inertia mentioned by the

>appropriate gear ratios (depending on where the inertia 'are' in the

>engine; in front of the transmission or behind it, and in front of or

>behind the final drive ratio), then I'd say it's not that bad. If not

>correct. ;-)

  I think it might be correct, as Gillespie's formulas are dealing with an

"effective mass increase", to simulate the rotational inertia effects, right? 

If so, I think I might have it down ok.  In a creative flash, I got an idea how

to do it with all the sections operating at different speeds and input/output

torques and think it works fine.  I end up making a big term that is the

"equivalent polar moment of inertia", which changes with each gear.  When the

wheels spin up, they seem to do it appropriately.  With some setups, they'll

zip up until the engine speed is hovering around the torque peak at a rate that

seems right (from my Firebird burnin' days :0), then catch, rock the car back a

little, and take off.  The performance matches my SAS program really closely,

so I think it might be ok.  Obviously, if you discover something I may be

missing here, let me know :0)

>The are also some efficiencies associated with these numbers as well

>in Gillespie's book. Which are in the range of 97%-99% mainly though.

>But still, I've always found my Ferrari (virtual!) to spin up a bit

>too quickly.

  That's still a fuzzy area for me.  The debate will continue there.  The racer

and dyno folks insist driveline efficiencies are never anywhere near this high,

while engineers and students usually say they must be because of heat reasons,

but I haven't seen any real evidence on their behalf.  The racers and dyno

folks show example after example.  Heck, I've even got a tech book on automatic

transmissions that says the efficiencies are typically around 80%, so who

knows?  I know my SAS program works rather well with numbers on the low end,

but not at the high end.  

>The quaternion code works btw. :) Cost me a whole day to find a bug

>where I mixed up 1 line of world & body coordinates, sigh, but voila.

>Now to throw the car into the air and see how it rotates with

>precession. That shouldn't be hard, given my driving style. ;-)

>

  1 line is all it takes.  Endlessly frustrating, isn't it!!?  lol   I still

haven't touched quaternions, so may come asking you for help when it's time. 

When you toss the car, compare it to my vector3b.exe program and let me know of

any obvious differences, if you'd be so kind :0)  

  Thanks,

Todd Wasson

Matt:

> That's where my problem still is, I can get to the Aw=... formula, but

> FxR is an unknown variable in my head too. :) (making 2 unknown var's,

> 1 equation, deadlock)

> 

> Ok, so R = radius of the wheel.

> Fx is then just the last (longitudinal) force that was calculated the

> last 'frame' (derived from the slipRatio graph)?

For real time use, that may be what you have to do. 

However it adds some lag into the system that 

can hurt the numerical stability. 

You need to be very careful about the radius also, 

if you allow it to change. If you do, this can create

another high frequency dynamical "vibration" mode in 

the overall system that can interact with the longitudinal 

dynamics that interacts with the suspension dynamics that 

upsets the ...;)

>>wandering aimlessly around at work today.  Not sure if I want to share this

>>though!!  lol

>

>Hehe, that makes me all the more curious!

>

  Ok, here goes:

  If we've got two rigid, spinning bodies (one axis only, please, no inertia

tensors, they make my head hurt with all that precession stuff :0)) connected

by a gear.  The first body has moment of inertia i1, and the second has i2. 

Assume they're both equal and connected by a 1:1 gear, so they spin at the same

speed.  What we really want is the acceleration of one of the bodies (they'll

both be the same in this case, of course.)  Once we've got the acceleration of

one, we can multiply by the gear ratio(s) between the two bodies to get the

acceleration of the other.

  If we have an input torque of 1 on the first body, we can find the rotational

acceleration (ra) by dividing torque (T) by the moment of inertia (i1).  

  ra = T / i1

  If both bodies are connected, we can add the two inertias:

  ra = T / (i1 + i2)

  I'm know you know this already.  Now, if set the gear so that the second body

rotates at twice the speed, it'll have to accelerate twice as quickly.  The

torque isn't changing, but we could double the rotational inertia (i2) to get

the same effect.  So we could define an "effective moment of inertia" (Ei2)

that would take care of this.   In this case, with the gear ratio of .5, which

doubles the acceleration:

  Ei2 = (1/.5) * i2

  Ei2 = 2 * i2

  Ei2 = 1/GearRatio * i2

  The first body, where we are applying the torque, doesn't need an effective

inertia.  The total of both bodies now becomes:

  EiTotal = i1 + 1/GearRatio * i2

  Anyway, in our example, where the real moments of inertia of both bodies are

identical, our total effective inertia (EiTotal) becomes 3.  1 for the first

body, and 2 for the second body because it has to rotate twice as quickly under

the torque.  

  Now, if our gear ratio is .5, we are only getting 1/2 the torque accelerating

the second body to begin with.  On top of that, its effective rotational

inertia has been doubled because it needs to accelerate twice as quickly.  Half

the torque and twice the rotational acceleration is the same as only giving

1/4th the torque, which is the same as having 4 times the rotational inertia

instead of 2.  Following me?

  If the gear ratio was 1/3, the second body would have triple the acceleration

(effective inertia is tripled), and also only 1/3rd of the input torque.  This

is the same thing as multiplying the moment of inertia by 9.  See?  It's

squared because it's got to accelerate faster and it has less input torque at

the same time.  

  For two bodies, define an effective inertia for each one.  The first one,

where we're applying the torque, is just i1, the true moment of inertia value. 

The second "effective inertia" becomes:

  Ei2 = 1/(GearRatio^2) * i2

  The total effective inertia becomes:

  EiTotal = i1 + 1/GearRatio^2 * i2

  Now the fun part.  What about a third body at the end of the line, with

another gear?  As before, we could set an effective moment of inertia for each

body, then add them up.  The third body would have GearRatio set according to

the joint between it and the second body.  However, it's input torque will be

drastically different because it's changed at the first and the second

(sequentially arranged) gears.  I'd set the input torque by multiplying by the

first gear ratio, then use the equation above in addition to it.  The third

body's effective inertia becomes:

  Ei3 = GearRatio1 * (1/GearRatio2^2) * i3

  The second body is:

  Ei2 = 1/(GearRatio^2) * i2

  The first body is just i1.  Total?

  EiTotal = i1 + Ei2 + Ei3

   or, in long terms:

  EiTotal = i1 + 1/(GearRatio1^2) * i2 + GearRatio1 * (1/GearRatio2^2) * i3

  For a fourth body and gear, Ei4 would be:

Ei4 = GearRatio1 * GearRatio2 * (1/GearRatio3^2) * i3

  Fifth body and gear would be:

Ei5 = GearRatio1 * GearRatio2 * GearRatio3 * (1/GearRatio4^2) * i4

  So, to be show off ;0),  I think a six body system joined by sequential gears

rotational acceleration could be calculated like this:

6

5

4

3

RotationalAcceleration = Torque / (i1 + 1/(GearRatio^2) * i2 + GearRatio1 *

(1/GearRatio2^2) * i3 + GearRatio1 * GearRatio2 * (1/GearRatio3^2) * i3 +

(GearRatio1 * GearRatio2 * GearRatio3 * (1/GearRatio4^2) * i4) + (GearRatio1 *

GearRatio2 * GearRatio3 * GearRatio4 * (1/GearRatio5^2) * i5))

  See a pattern?  I haven't tested this yet, but think it will work.  Perhaps

the loss that Gillespie mentioned was due to each extra gear in the system.  I

forget exactly what you were describing, but maybe that's it.  

**  Now, I've put Straightline Acceleration Simulator on sale (at the link in

my sig) for two weeks at only $10 a copy.  Go there and look at it, and tell

your friends please :0)  **

Todd Wasson

  By the way, that stuff would give you the rotational acceleration of the

engine if you set i1 to be inertia of the engine, then go on down the

drivetrain with as many rotating parts as you want to use.  You still need to

apply torque to this from the slip ratio (the old "fighting the engine" stuff

from months ago).  I think this would be the product of all the gear ratios (in

reverse order, or inverted (1/whatever)) and the torque at the wheels.  This

would be added to engine torque, divided by the "effective inertia" from the

other post, and used to accelerate *body 1*, and that's it.  The rest of the

velocities could obviously be calculated by multiplying engine speed by the

appropriate gear ratios.

  Hmm...  Maybe we shouldn't be talking about this stuff in a widely read

newsgroup ?  :-)  

  This has got me excited.  It ought to be not too terribly difficult to do a

four wheel drive system that actually works the way it should.  Too bad I don't

know much about differentials yet :0P

Todd Wasson

>come up with needing far higher efficiencies.

>

  Perhaps.  I'll try the equations from my other post in the 3-D model, since

it gets the same results as SAS, and see what happens.  This just might be

where folks are getting confused.  If so, the issue of "correct efficiencies"

can be put to rest in the drag racing community once and for all :0)  Won't

that be fun to debate with people?  

>Yes, and I wasn't feeling good as well (a little flu). Or am I mixing

>up action and reaction? ;-)

>I've found that almost all major bugs consist of really 1 little flaw

>somewhere in the system. Like doing += instead of -=. Endless

>scribbling of numbers on papers, seeing where the numbers go wrong,

>sigh, and that with suspensions, gravity and other forces making

>estimations of what's right and what's not very hard.

  You're telling me???  lol  I feel ya on this one!

>Besides, it

>worked great with the car in a 0 degree heading. It would just double

>the angle when rotating.

  When you switched to quarternions, right?

> It would just double

>the angle when rotating. Fortunately, this meant that putting the car

>at heading 180 meant it would swing round (yaw) by itself! It's now

>back to it's normal self for 99% again. :) (and I call that

>*improvement*? lol)

  It's a huge relief when you fix something like that.  Makes you want to break

stuff, doesn't it?  :0)

>I have some problems now that I don't have pitch/yaw/roll angles

>anymore (for the camera view; I don't know anymore how to follow the

>car correctly so that I'm always behind it). On the other hand, all

>trigonometry is disappearing! No sin(), cos() or tan(); it's all

>one-time setup of a start quaternion, and after that you don't need

>more than a handful of * and + to rotate about axes. Strange, but

>wonderful. :)

  Yes, I've been thinking about that using the 3x3 matrix and inertia tensor. 

It'll be a relief for sure, and will probably make the rest of everything much

simpler.

>I'll have to get my wheels to do the same thing; they're still using

>the old way. That way I think I can have gyroscopic precession of the

>wheels have my car's body stabilise for free. :)

>

  This one I haven't figured out yet.  If you've got a spinning wheel attached

to the car and you turn it, how do you calculate the torques sent to the car? 

Do you find the 3 axis (world) angular momentum change and apply that to the

body?  If so, that'd be pretty cool.  Just like GPL :0)  

>>When you toss the car, compare it to my vector3b.exe program and let me know

>of

>>any obvious differences, if you'd be so kind :0)

>

>I will. The three values in your .exe are the inertia values of XYZ?

>

>

  Yes.  Z is about the axis pointing into the screen, x is left/right and y is

up/down.  The matrix doesn't reorthagonalize itself, so if you spin it fast,

it'll go crazy and squash itself.  Just try slow rotation and let me know how

it compares.  

Todd Wasson

> >> Ok, so R = radius of the wheel.

> >> Fx is then just the last (longitudinal) force that was calculated the

> >> last 'frame' (derived from the slipRatio graph)?

> >

> >For real time use, that may be what you have to do.

>

> Hm, I'll rethink the equations then. Strange then that the load force

> (the weight on the tire) isn't in the Aw formula? You would say this

> has an effect on the acceleration of the wheel.

>

The normal force is involved, because it affects the F force of the F cross R

> >You need to be very careful about the radius also,

> >if you allow it to change.

>

> You mean like a loaded_Radius? Currently I leave the radius as it is.

Yes, probably for the best ;)

>   I think it might be correct, as Gillespie's formulas are dealing with an

> "effective mass increase", to simulate the rotational inertia effects, right?

Just write Simulate with a capital S.   ;)

The effective mass is just some of the terms of the rotational

equations of motion collected together. When this is done,

together they end up looking like a mass.

> If so, I think I might have it down ok.  In a creative flash, I got an idea how

> to do it with all the sections operating at different speeds and input/output

> torques and think it works fine.  I end up making a big term that is the

> "equivalent polar moment of inertia", which changes with each gear.

This is exactly what those equations do. They collect terms such that

you can divide one torque by that effective inertia  to find one

angular acceleration (for a chosen one of the rotating pieces that

are geared together.)   You can them find the other accelerations

using the gear ratios between the pieces.

>Hm, I'll rethink the equations then. Strange then that the load force

>(the weight on the tire) isn't in the Aw formula? You would say this

>has an effect on the acceleration of the wheel.

>

  It is already included.  When you calculated longitudinal force (Fx), that

was partly a function of load.  The wheel only cares how much force is

resisting acceleration, it doesn't care whether it's coming from grip or load,

or a combination of the two.

  I still don't understand how those formulas will let you directly calculate

the acceleration of the wheels and drivetrain if they are not in contact with

the road.  Aren't they giving you an "effective mass" to add to the vehicle

mass, causing the whole thing to lose acceleration directly, rather than

returning an "effective rotational inertia"?  Perhaps I need to look more

closely.. :0)

Todd Wasson

The

"effective mass" = "effective inertia" / (Tire radius)**2

that keeps the units correct as mass units.

If the tires aren't in ground contact, then the Tire radius isn't needed because

the force times radius term is no longer involved in the equation of motion.

So you can just use the "effective inertia" that has collected together

the effects of all the parts different rotational accelerations.

Be careful for the wheels not in contact application though.

I think that the gear ratio squared terms in the in contact equations

of motion come about through the combination of the accelerations

and also the ground force feeding back through.

For the wheels free case the useful effective inertia

may just have gear ratio to the first power:

torque = inertia * acceleration =  (i1 * a1) + (i2 * a2) + (i3 * a3)

          = ( i1 + G12  i2 + G12  G23  i3) * a1

for parts with inertias i1, i2, i3 geared together

such that  a2 = a1 G12,  a3 = a2 G23

- Matt

