Flat functions |
axis_to_quat | void axis_to_quat(float a[3], float phi, float q[4]); |
tb_project_to_sphere | static float tb_project_to_sphere(float, float, float); static void normalize_quat(float [4]); |
vzero | vzero(float *v) |
vset | vset(float *v, float x, float y, float z) |
vsub | vsub(const float *src1, const float *src2, float *dst) |
vcopy | vcopy(const float *v1, float *v2) |
vcross | vcross(const float *v1, const float *v2, float *cross) |
vlength | vlength(const float *v) |
vscale | vscale(float *v, float div) |
vnormal | vnormal(float *v) |
vdot | vdot(const float *v1, const float *v2) |
vadd | vadd(const float *src1, const float *src2, float *dst) |
trackball | trackball(float q[4], float p1x, float p1y, float p2x, float p2y, float tbSize) |
axis_to_quat | axis_to_quat(float a[3], float phi, float q[4]) |
tb_project_to_sphere | tb_project_to_sphere(float r, float x, float y) |
add_quats | add_quats(float q1[4], float q2[4], float dest[4]) |
normalize_quat | normalize_quat(float q[4]) |
build_rotmatrix | build_rotmatrix(float m[4][4], float q[4]) |
class QTrackBall | .h |
constructor | QTrackBall(int w,int h,int x,int y) |
destructor | ~QTrackBall() |
GetQuat | void GetQuat(float *q) |
SetQuat | void SetQuat(float *q) |
Movement | void Movement(int sx,int sy,int dx,int dy) Mostly, this indicates a mouse move from (sx,sy) to (dx,dy) in the defined window space. This is converted to [-1.0...1.0] in window coordinates and passed to trackball() to calculate the quaternion |
BuildRotateMatrix | void BuildRotateMatrix(float *m) |
/*
* QTrackball - virtual trackball
* 07-09-98: Created
* NOTES:
* Implementation of a virtual trackball.
* Implemented by Gavin Bell, lots of ideas from Thant Tessman and
* the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129.
*
* Vector manip code:
*
* Original code from:
* David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli
*
* Much mucking with by:
* Gavin Bell
*
* C++ code by: Ruud van Gaal
* FUTURE;
* - Clip coordinates in Movement()
* (C) MG/RVG
*/
#include <qlib/trackball.h>
#include <bstring.h>
// Import from trackball.c (glut 3.3)
#include <math.h>
void axis_to_quat(float a[3], float phi, float q[4]);
/*
* Local function prototypes (not defined in trackball.h)
*/
static float tb_project_to_sphere(float, float, float);
static void normalize_quat(float [4]);
void
vzero(float *v)
{
v[0] = 0.0;
v[1] = 0.0;
v[2] = 0.0;
}
void
vset(float *v, float x, float y, float z)
{
v[0] = x;
v[1] = y;
v[2] = z;
}
void
vsub(const float *src1, const float *src2, float *dst)
{
dst[0] = src1[0] - src2[0];
dst[1] = src1[1] - src2[1];
dst[2] = src1[2] - src2[2];
}
void
vcopy(const float *v1, float *v2)
{
register int i;
for (i = 0 ; i < 3 ; i++)
v2[i] = v1[i];
}
void
vcross(const float *v1, const float *v2, float *cross)
{
float temp[3];
temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
vcopy(temp, cross);
}
float
vlength(const float *v)
{
return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
}
void
vscale(float *v, float div)
{
v[0] *= div;
v[1] *= div;
v[2] *= div;
}
void
vnormal(float *v)
{
vscale(v,1.0/vlength(v));
}
float
vdot(const float *v1, const float *v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}
void
vadd(const float *src1, const float *src2, float *dst)
{
dst[0] = src1[0] + src2[0];
dst[1] = src1[1] + src2[1];
dst[2] = src1[2] + src2[2];
}
/*
* Ok, simulate a track-ball. Project the points onto the virtual
* trackball, then figure out the axis of rotation, which is the cross
* product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
* Note: This is a deformed trackball-- is a trackball in the center,
* but is deformed into a hyperbolic sheet of rotation away from the
* center. This particular function was chosen after trying out
* several variations.
*
* It is assumed that the arguments to this routine are in the range
* (-1.0 ... 1.0)
*/
void
trackball(float q[4], float p1x, float p1y, float p2x, float p2y,
trackball(float q[4], float p1x, float p1y, float p2x, float p2y, float tbSize)
{
float a[3]; /* Axis of rotation */
float phi; /* how much to rotate about axis */
float p1[3], p2[3], d[3];
float t;
if (p1x == p2x && p1y == p2y) {
/* Zero rotation */
vzero(q);
q[3] = 1.0;
return;
}
/*
* First, figure out z-coordinates for projection of P1 and P2 to
* deformed sphere
*/
vset(p1,p1x,p1y,tb_project_to_sphere(tbSize,p1x,p1y));
vset(p2,p2x,p2y,tb_project_to_sphere(tbSize,p2x,p2y));
/*
* Now, we want the cross product of P1 and P2
*/
vcross(p2,p1,a);
/*
* Figure out how much to rotate around that axis.
*/
vsub(p1,p2,d);
t = vlength(d) / (2.0*tbSize);
/*
* Avoid problems with out-of-control values...
*/
if (t > 1.0) t = 1.0;
if (t < -1.0) t = -1.0;
phi = 2.0 * asin(t);
axis_to_quat(a,phi,q);
}
/*
* Given an axis and angle, compute quaternion.
*/
void
axis_to_quat(float a[3], float phi, float q[4])
{
vnormal(a);
vcopy(a,q);
vscale(q,sin(phi/2.0));
q[3] = cos(phi/2.0);
}
/*
* Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
* if we are away from the center of the sphere.
*/
static float
tb_project_to_sphere(float r, float x, float y)
{
float d, t, z;
d = sqrt(x*x + y*y);
if (d < r * 0.70710678118654752440) { /* Inside sphere */
z = sqrt(r*r - d*d);
} else { /* On hyperbola */
t = r / 1.41421356237309504880;
z = t*t / d;
}
return z;
}
/*
* Given two rotations, e1 and e2, expressed as quaternion rotations,
* figure out the equivalent single rotation and stuff it into dest.
*
* This routine also normalizes the result every RENORMCOUNT times it is
* called, to keep error from creeping in.
*
* NOTE: This routine is written so that q1 or q2 may be the same
* as dest (or each other).
*/
#define RENORMCOUNT 97
void
add_quats(float q1[4], float q2[4], float dest[4])
{
static int count=0;
float t1[4], t2[4], t3[4];
float tf[4];
vcopy(q1,t1);
vscale(t1,q2[3]);
vcopy(q2,t2);
vscale(t2,q1[3]);
vcross(q2,q1,t3);
vadd(t1,t2,tf);
vadd(t3,tf,tf);
tf[3] = q1[3] * q2[3] - vdot(q1,q2);
dest[0] = tf[0];
dest[1] = tf[1];
dest[2] = tf[2];
dest[3] = tf[3];
if (++count > RENORMCOUNT) {
count = 0;
normalize_quat(dest);
}
}
/*
* Quaternions always obey: a^2 + b^2 + c^2 + d^2 = 1.0
* If they don't add up to 1.0, dividing by their magnitued will
* renormalize them.
*
* Note: See the following for more information on quaternions:
*
* - Shoemake, K., Animating rotation with quaternion curves, Computer
* Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
* - Pletinckx, D., Quaternion calculus as a basic tool in computer
* graphics, The Visual Computer 5, 2-13, 1989.
*/
static void
normalize_quat(float q[4])
{
int i;
float mag;
mag = (q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
for (i = 0; i < 4; i++) q[i] /= mag;
}
/*
* Build a rotation matrix, given a quaternion rotation.
*
*/
void
build_rotmatrix(float m[4][4], float q[4])
{
m[0][0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]);
m[0][1] = 2.0 * (q[0] * q[1] - q[2] * q[3]);
m[0][2] = 2.0 * (q[2] * q[0] + q[1] * q[3]);
m[0][3] = 0.0;
m[1][0] = 2.0 * (q[0] * q[1] + q[2] * q[3]);
m[1][1]= 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]);
m[1][2] = 2.0 * (q[1] * q[2] - q[0] * q[3]);
m[1][3] = 0.0;
m[2][0] = 2.0 * (q[2] * q[0] - q[1] * q[3]);
m[2][1] = 2.0 * (q[1] * q[2] + q[0] * q[3]);
m[2][2] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]);
m[2][3] = 0.0;
m[3][0] = 0.0;
m[3][1] = 0.0;
m[3][2] = 0.0;
m[3][3] = 1.0;
}
// -- end of import
/************
* C++ Class *
************/
QTrackBall::QTrackBall(int w,int h,int x,int y)
{ int i;
rWindow.x=x;
rWindow.y=y;
rWindow.wid=w;
rWindow.hgt=h;
/*
* This size should really be based on the distance from the center of
* rotation to the point on the object underneath the mouse. That
* point would then track the mouse as closely as possible. This is a
* simple example, though, so that is left as an Exercise for the
* Programmer.
*/
size=0.8;
for(i=0;i<3;i++)
quat[i]=0;
quat[3]=1.0;
}
QTrackBall::~QTrackBall()
{
}
void QTrackBall::GetQuat(float *q)
{
int i;
for(i=0;i<4;i++)
q[i]=quat[i];
}
void QTrackBall::SetQuat(float *q)
{
int i;
for(i=0;i<4;i++)
quat[i]=q[i];
}
void QTrackBall::Movement(int sx,int sy,int dx,int dy)
// Mostly, this indicates a mouse move from (sx,sy) to (dx,dy)
// in the defined window space.
// This is converted to [-1.0...1.0] in window coordinates and
// passed to trackball() to calculate the quaternion
{
int cx,cy;
float p1x,p1y;
float p2x,p2y;
float rotQuat[4]; // Rotation
// Clip x/y coordinates to window
// Center
cx=rWindow.x+rWindow.wid/2;
cy=rWindow.y+rWindow.hgt/2;
p1x=((float)(sx-cx))/((float)rWindow.wid/2);
p1y=((float)(sy-cy))/((float)rWindow.hgt/2);
p2x=((float)(dx-cx))/((float)rWindow.wid/2);
p2y=((float)(dy-cy))/((float)rWindow.hgt/2);
//qdbg("S: %d,%d mapped to %f,%f\n",sx,sy,p1x,p1y);
//qdbg("D: %d,%d mapped to %f,%f\n",dx,dy,p2x,p2y);
// OpenGL coordinate trouble
p1y=-p1y;
p2y=-p2y;
trackball(rotQuat,p1x,p1y,p2x,p2y,size);
add_quats(quat,rotQuat,quat);
}
void QTrackBall::BuildRotateMatrix(float *m)
{
float mm[4][4];
build_rotmatrix(mm,quat);
bcopy(mm,m,sizeof(mm));
}